/**
* Copyright uwi ( http://wonderfl.net/user/uwi )
* GNU General Public License, v3 ( http://www.gnu.org/licenses/quick-guide-gplv3.html )
* Downloaded from: http://wonderfl.net/c/y5ck
*/
package {
import flash.display.Sprite;
import flash.text.TextField;
import flash.utils.getTimer;
// http://code.google.com/p/as3matrix/
// のコードを改変
// 基本はLINPACKらしい
// A=USV^T
public class SVD extends Sprite {
private var _tf : TextField;
public function SVD() {
_tf = new TextField();
_tf.width = 465;
_tf.height = 465;
addChild(_tf);
var s : int = getTimer();
/*
var mat : Array = [
[4, 1, 3],
[5, 1, -1],
[2, 2, 0],
[-3, 1, 5]
];
*/
var mat : Array = [
[1,0,0,0,2],
[0,0,3,0,0],
[0,0,0,0,0],
[0,4,0,0,0]
];
var a : Array = doSVD(mat);
tr(a[0]); // Ui
tr(a[1]); // Vi
tr(a[2]); // S
var g : int = getTimer();
tr((g - s) + " ms");
}
public static function makeMatrix(m : uint, n : uint) : Array
{
var ret : Array = new Array(m);
for(var i : uint = 0;i < m;i++){
var row : Array = new Array(n);
for(var j : uint = 0;j < n;j++){
row[j] = 0;
}
ret[i] = row;
}
return ret;
}
public static function doSVD(arg:Array) : Array
{
var m:uint = arg.length;
var n:uint = arg[0].length;
var a:Array = arg.concat();
var nu:int = Math.min(m,n);
var s : Array = new Array (Math.min(m+1,n));
var i:int;
var Ui : Array = new Array(m);
for (i = 0; i < Ui.length; i++){
Ui[i] = new Array(nu);
for(j = 0;j < nu;j++){
Ui[i][j] = 0;
}
}
var Vi : Array = new Array(n);
for (i = 0; i < Vi.length; i++){
Vi[i] = new Array(m);
for(j = 0;j < m;j++){
Vi[i][j] = 0;
}
}
var e:Array = new Array(n);
var work:Array = new Array(m);
var wantu:Boolean = true;
var wantv:Boolean = true;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
var nct:int = Math.min(m-1,n);
var nrt:int = Math.max(0,Math.min(n-2,m));
var j:int;
var t:Number;
for (var k:int = 0; k < Math.max(nct,nrt); k++) {
if (k < nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
s[k] = 0;
for (i = k; i < m; i++) {
s[k] = hypot(s[k],a[i][k]);
}
if (s[k] != 0.0) {
if (a[k][k] < 0) {
s[k] = -s[k];
}
for (i = k; i < m; i++) {
a[i][k] /= s[k];
}
a[k][k] += 1;
}
s[k] = -s[k];
}
for (j = k+1; j < n; j++) {
if ((k < nct) && (s[k] != 0.0)) {
// Apply the transformation.
t = 0;
for (i = k; i < m; i++) {
t += a[i][k] * a[i][j];
}
t = -t/a[k][k];
for (i = k; i < m; i++) {
a[i][j] += t*a[i][k];
}
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = a[k][j];
/*trace ('e[' + j + ']: ' + e[j]);*/
}
if (wantu && (k < nct)) {
// Place the transformation in U for subsequent back
// multiplication.
for (i = k; i < m; i++) {
Ui[i][k] = a[i][k];
}
}
if (k < nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
// Compute 2-norm without under/overflow.
e[k] = 0;
for (i = k+1; i < n; i++) {
e[k] = hypot(e[k],e[i]);
}
if (e[k] != 0.0) {
if (e[k+1] < 0.0) {
e[k] = -e[k];
}
for (i = k+1; i < n; i++) {
e[i] /= e[k];
}
e[k+1] += 1.0;
}
e[k] = -e[k];
if ((k+1 < m) && (e[k] != 0.0)) {
// Apply the transformation.
for (i = k+1; i < m; i++) {
work[i] = 0.0;
}
for (j = k+1; j < n; j++) {
for (i = k+1; i < m; i++) {
work[i] += e[j] * a[i][j];
}
}
for (j = k+1; j < n; j++) {
t = -e[j]/e[k+1];
for (i = k+1; i < m; i++) {
a[i][j] += t*work[i];
}
}
}
if (wantv) {
// Place the transformation in V for subsequent
// back multiplication.
for (i = k+1; i < n; i++) {
Vi[i][k] = e[i];
}
}
}
}
// Set up the final bidiagonal matrix or order p.
var p:int = Math.min(n,m+1);
if (nct < n) {
s[nct] = a[nct][nct];
}
if (m < p) {
s[p-1] = 0.0;
}
if (nrt+1 < p) {
e[nrt] = a[nrt][p-1];
}
e[p-1] = 0.0;
// If required, generate U.
if (wantu) {
for (j = nct; j < nu; j++) {
for (i = 0; i < m; i++) {
Ui[i][j] = 0.0;
}
Ui[j][j] = 1.0;
}
for (k = nct-1; k >= 0; k--) {
if (s[k] != 0.0) {
for (j = k+1; j < nu; j++) {
t = 0;
for (i = k; i < m; i++) {
t += Ui[i][k]*Ui[i][j];
}
t = -t/Ui[k][k];
for (i = k; i < m; i++) {
Ui[i][j] += t*Ui[i][k];
}
}
for (i = k; i < m; i++ ) {
Ui[i][k] = -Ui[i][k];
}
Ui[k][k] = 1.0 + Ui[k][k];
for (i = 0; i < k-1; i++) {
Ui[i][k] = 0.0;
}
} else {
for (i = 0; i < m; i++) {
Ui[i][k] = 0.0;
}
Ui[k][k] = 1.0;
}
}
}
// If required, generate V.
if (wantv) {
for (k = n-1; k >= 0; k--) {
if ((k < nrt) && (e[k] != 0.0)) {
for (j = k+1; j < nu; j++) {
t = 0;
for (i = k+1; i < n; i++) {
t += Vi[i][k]*Vi[i][j];
}
t = -t/Vi[k+1][k];
for (i = k+1; i < n; i++) {
Vi[i][j] += t*Vi[i][k];
}
}
}
for (i = 0; i < n; i++) {
Vi[i][k] = 0.0;
}
Vi[k][k] = 1.0;
}
}
// Main iteration loop for the singular values.
var pp:int = p-1;
var iter:int = 0;
var eps:Number = 1e-10;
var tiny:Number = 1e-10;
var ks:int;
var ttt:Number;
var f:Number;
var kase:int;
var iteration:int = 0;
var debug:Boolean = false;
while (p > 0) {
/*if (iteration++ % 100 == 0) {
trace('iteration: ' + iteration + ' p: ' + p);
debug = true;
} else debug = false;*/
// Here is where a test for too many iterations would go.
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; k--) {
if (debug) {
trace('k: ' + k);
}
if (k == -1) {
break;
}
if (Math.abs(e[k]) <= tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
e[k] = 0;
break;
} else if (debug) {
trace('e[k]: ' + Math.abs(e[k]) + ' sth: ' + (tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))));
}
}
if (k == p-2) {
kase = 4;
} else {
for (ks = p-1; ks >= k; ks--) {
if (ks == k) {
break;
}
ttt = (ks != p ? Math.abs(e[ks]) : 0.) +
(ks != k+1 ? Math.abs(e[ks-1]) : 0.);
if (Math.abs(s[ks]) <= tiny + eps*ttt) {
s[ks] = 0.0;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p-1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
f = e[p-2];
e[p-2] = 0.0;
for (j = p-2; j >= k; j--) {
t = hypot(s[j],f);
cs = s[j]/t;
sn = f/t;
s[j] = t;
if (j != k) {
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if (wantv) {
for (i = 0; i < n; i++) {
t = cs*Vi[i][j] + sn*Vi[i][p-1];
Vi[i][p-1] = -sn*Vi[i][j] + cs*Vi[i][p-1];
Vi[i][j] = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2: {
f = e[k-1];
e[k-1] = 0.0;
for (j = k; j < p; j++) {
ttt = hypot(s[j],f);
var cs:Number = s[j]/ttt;
var sn:Number = f/ttt;
s[j] = ttt;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu) {
for (i = 0; i < m; i++) {
ttt = cs*Ui[i][j] + sn*Ui[i][k-1];
Ui[i][k-1] = -sn*Ui[i][j] + cs*Ui[i][k-1];
Ui[i][j] = ttt;
}
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
var scale:Number = Math.max(Math.max(Math.max(Math.max(
Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),
Math.abs(s[k])),Math.abs(e[k]));
var sp:Number = s[p-1]/scale;
var spm1:Number = s[p-2]/scale;
var epm1:Number = e[p-2]/scale;
var sk:Number = s[k]/scale;
var ek:Number = e[k]/scale;
var b:Number = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
var c:Number = (sp*epm1)*(sp*epm1);
var shift:Number = 0.0;
if ((b != 0.0) || (c != 0.0)) {
shift = Math.sqrt(b*b + c);
if (b < 0.0) {
shift = -shift;
}
shift = c/(b + shift);
}
f = (sk + sp)*(sk - sp) + shift;
var g:Number = sk*ek;
// Chase zeros.
for (j = k; j < p-1; j++) {
ttt = hypot(f,g);
cs = f/ttt;
sn = g/ttt;
if (j != k) {
e[j-1] = ttt;
}
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
if (wantv) {
for (i = 0; i < n; i++) {
ttt = cs*Vi[i][j] + sn*Vi[i][j+1];
Vi[i][j+1] = -sn*Vi[i][j] + cs*Vi[i][j+1];
Vi[i][j] = ttt;
}
}
ttt = hypot(f,g);
cs = f/ttt;
sn = g/ttt;
s[j] = ttt;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if (wantu && (j < m-1)) {
for (i = 0; i < m; i++) {
ttt = cs*Ui[i][j] + sn*Ui[i][j+1];
Ui[i][j+1] = -sn*Ui[i][j] + cs*Ui[i][j+1];
Ui[i][j] = ttt;
}
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if (s[k] <= 0.0) {
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv) {
for (i = 0; i <= pp; i++) {
Vi[i][k] = -Vi[i][k];
}
}
}
// Order the singular values.
while (k < pp) {
if (s[k] >= s[k+1]) {
break;
}
ttt = s[k];
s[k] = s[k+1];
s[k+1] = ttt;
if (wantv && (k < n-1)) {
for (i = 0; i < n; i++) {
ttt = Vi[i][k+1]; Vi[i][k+1] = Vi[i][k]; Vi[i][k] = ttt;
}
}
if (wantu && (k < m-1)) {
for (i = 0; i < m; i++) {
ttt = Ui[i][k+1]; Ui[i][k+1] = Ui[i][k]; Ui[i][k] = ttt;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
return [Ui, Vi, s];
}
public static function hypot(a:Number, b:Number):Number {
var r:Number;
if (Math.abs(a) > Math.abs(b)) {
r = b/a;
r = Math.abs(a)*Math.sqrt(1+r*r);
} else if (b != 0) {
r = a/b;
r = Math.abs(b)*Math.sqrt(1+r*r);
} else {
r = 0.0;
}
return r;
}
private function tr(...o : Array) : void
{
_tf.appendText(o + "\n");
}
}
}