/**
* Copyright uwi ( http://wonderfl.net/user/uwi )
* MIT License ( http://www.opensource.org/licenses/mit-license.php )
* Downloaded from: http://wonderfl.net/c/aO5M
*/
package {
import org.papervision3d.view.BasicView;
import flash.text.TextField;
import flash.events.Event;
import net.hires.debug.Stats;
import org.papervision3d.materials.*;
import org.papervision3d.objects.primitives.*;
import org.papervision3d.core.proto.*;
import flash.geom.*;
import org.papervision3d.materials.utils.*;
import org.papervision3d.objects.*;
import org.papervision3d.core.math.*;
[SWF(backgroundColor="0x000000", frameRate="60")]
public class PV3D extends BasicView {
private var _tf : TextField;
private var m : MaterialObject3D;
public function PV3D() {
super(0, 0, true, false, "free");
_tf = new TextField();
addChild(_tf);
_tf.textColor = 0xffffff;
_tf.width = 200;
_tf.height = 465;
m = new WireframeMaterial();
m.doubleSided = true;
// addChild(new Stats());
var plane : Plane = new Plane(m, 1000, 1000, 5, 5);
plane.localRotationY = 90;
plane.x = 1000;
scene.addChild(plane);
camera.x = 1000;
camera.y = 1000;
camera.z = 1000;
camera.lookAt(plane);
var ml : MaterialsList = new MaterialsList();
ml.addMaterial(m, "all");
_l1 = new Link(new Vector3D(1000, 0, 0), 500, Vector3D.Y_AXIS, new Vector3D(-1, 0, 0), 0, 0, 0, null);
_l2 = new Link(new Vector3D(1000, 0, 0), 500, Vector3D.Y_AXIS, new Vector3D(-1, 0, 0), 0, 0, 0, _l1);
_b1 = new Cube(ml, 500, 80, 80);
_b2 = new Cube(ml, 500, 80, 80);
_l1.theta = 0.7;
_l2.theta = 0.3;
scene.addChild(_b1);
scene.addChild(_b2);
_camera = new OperableSphereCamera(new Number3D(0, 0, 0), 2000, new Number3D(0, 0, 1), new Number3D(0, 1, 0) , stage, 0.005, 0.005);
startRendering();
}
private var _l1 : Link;
private var _l2 : Link;
private var _b1 : Cube;
private var _b2 : Cube;
override protected function onRenderTick(e : Event = null) : void
{
_l1.FK();
_tf.text = "";
renderBone(_b1, _l1);
renderBone(_b2, _l2);
tr(Link.FKFast(_l2));
super.onRenderTick(e);
}
private function renderBone(b : DisplayObject3D, l : Link) : void
{
var h : Vector3D = l.head();
tr(h);
b.x = (l.x.x + h.x) / 2;
b.y = (l.x.y + h.y) / 2;
b.z = (l.x.z + h.z) / 2;
b.transform.n11 = -l.trans.rawData[0];
b.transform.n12 = -l.trans.rawData[1];
b.transform.n13 = -l.trans.rawData[2];
b.transform.n21 = l.trans.rawData[4];
b.transform.n22 = l.trans.rawData[5];
b.transform.n23 = l.trans.rawData[6];
b.transform.n31 = l.trans.rawData[8];
b.transform.n32 = l.trans.rawData[9];
b.transform.n33 = l.trans.rawData[10];
}
private function tr(...o : Array) : void
{
_tf.appendText(o + "\n");
_tf.scrollV = _tf.maxScrollV;
}
}
}
import flash.geom.Matrix3D;
import flash.geom.Vector3D;
// Joint - Bone
class Link
{
public var x : Vector3D;
public var len : Number;
public var n : Vector3D;
public var f : Vector3D;
public var theta : Number;
public var mintheta : Number;
public var maxtheta : Number;
public var trans : flash.geom.Matrix3D;
public var transL : flash.geom.Matrix3D;
public var parent : Link;
public var child : Link;
public function Link(
x : Vector3D, len : Number,
n : Vector3D, f : Vector3D,
theta : Number, mintheta : Number, maxtheta : Number,
parent : Link)
{
this.x = x;
this.len = len;
this.n = n; this.f = f;
this.theta = theta; this.mintheta = mintheta; this.maxtheta = maxtheta;
this.parent = parent;
if(parent != null)parent.child = this;
this.child = null;
this.transL = new flash.geom.Matrix3D();
this.trans = new flash.geom.Matrix3D();
}
public function calcTransLocal() : flash.geom.Matrix3D
{
transL.identity();
transL.appendTranslation(f.x * len, f.y * len, f.z * len);
transL.appendRotation(theta * 180 / Math.PI, n);
return transL;
}
private static const ZERO : Vector3D = new Vector3D(0, 0, 0);
public function head() : Vector3D
{
return trans.transformVector(ZERO);
}
public function FK() : void
{
if(parent != null){
x = parent.trans.transformVector(ZERO);
trans = parent.trans.clone();
}else{
trans.identity();
trans.appendTranslation(x.x, x.y, x.z);
}
calcTransLocal();
trans.prepend(transL);
if(child != null){
child.FK();
}
}
// 葉の座標だけ求める
public static function FKFast(targ : Link) : Vector3D
{
var ret : Vector3D = ZERO.clone();
var r : Link = null;
for(var l : Link = targ;l != null;l = l.parent){
//l.calcTransLocal();
ret = l.transL.transformVector(ret);
r = l;
}
ret.x += r.x.x;
ret.y += r.x.y;
ret.z += r.x.z;
return ret;
}
public function root() : Link
{
return parent != null ? parent.root() : this;
}
// thisの位置をtargにするための逆運動学
public function IK(targ : Vector3D) : Array
{
// FKの微分を計算してJacobi行列を構成
var seq : Array = [];
var l : Link;
var r : Link = null;
for(l = this;l != null;l = l.parent){
seq.push(l);
r = l;
}
var J : Array = [];
for(var i : uint = 0;i < seq.length;i++){
var ret : Vector3D = ZERO.clone();
for(l = this;l != null;l = l.parent){
if(l == seq[i]){
// 微分項
var dTransL : flash.geom.Matrix3D = new flash.geom.Matrix3D();
dTransL.appendTranslation(f.x * len, f.y * len, f.z * len);
dTransL.append(dRotateMatrix(l.n, theta));
ret = dTransL.transformVector(ret);
}else{
// 非微分項
ret = l.transL.transformVector(ret);
}
}
ret.x += r.x.x;
ret.y += r.x.y;
ret.z += r.x.z;
}
J.push([ret.x, ret.y, ret.z]);
// TODO JからJ'を構成
var UVS : Array = MatrixUtils.doSVD(J);
var IS : Array = new Array(S[0].length);
for(i = 0;i < IS.length;i++){
IS[i] = new Array(S.length);
for(j = 0;j < S.length;j++){
IS[i][j] = (i != j || S[i][j] == 0) ? 0 : 1.0 / S[i][j];
}
}
var JSharp : Array = MatrixUtils.mul(V, Matrix(IS, MatrixUtils.transpose(U)));
return null;
}
public static function dRotateMatrix(axis : Vector3D, angle : Number) : flash.geom.Matrix3D
{
var nCos:Number = -Math.sin(angle);
var nSin:Number = Math.cos(angle);
var scos:Number = -nCos;
var sxy :Number = axis.x * axis.y * scos;
var syz :Number = axis.y * axis.z * scos;
var sxz :Number = axis.x * axis.z * scos;
var sz :Number = nSin * axis.z;
var sy :Number = nSin * axis.y;
var sx :Number = nSin * axis.x;
return new flash.geom.Matrix3D(Vector.<Number>([
nCos + axis.x * axis.x * scos, -sz + sxy, sy + sxz,
sz + sxy, nCos + axis.y * axis.y * scos, -sx + syz,
-sy + sxz, sx + syz, nCos + axis.z * axis.z * scos
]));
}
}
class MatrixUtils
{
public static function transpose(mat : Array) : Array
{
var r : uint = mat.length;
var c : uint = mat[0].length;
var ret : Array = new Array(c);
for(var i : uint = 0;i < c;i++){
var row : Array = new Array(r);
for(var j : uint = 0;j < r;j++){
row[j] = mat[j][i];
}
ret[i] = row;
}
return ret;
}
public static function mul(a : Array, b : Array) : Array
{
var r : uint = a.length;
var c : uint = b[0].length;
var u : uint = a[0].length;
if(u != b.length)return null;
var ret : Array = new Array(r);
for(var i : uint = 0;i < r;i++){
var row : Array = new Array(c);
for(var j : uint = 0;j < c;j++){
var val : Number = 0;
for(var k : uint = 0;k < u;k++){
val += a[i][k] * b[k][j];
}
row[j] = val;
}
ret[i] = row;
}
return ret;
}
public static function doSVD(arg:Array) : Array
{
var m:uint = arg.length;
var n:uint = arg[0].length;
var a:Array = arg.concat();
var nu:int = Math.min(m,n);
var s : Array = new Array (Math.min(m+1,n));
var i:int;
var Ui : Array = new Array(m);
for (i = 0; i < Ui.length; i++){
Ui[i] = new Array(nu);
for(j = 0;j < nu;j++){
Ui[i][j] = 0;
}
}
var Vi : Array = new Array(n);
for (i = 0; i < Vi.length; i++){
Vi[i] = new Array(m);
for(j = 0;j < m;j++){
Vi[i][j] = 0;
}
}
var e:Array = new Array(n);
var work:Array = new Array(m);
var wantu:Boolean = true;
var wantv:Boolean = true;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
var nct:int = Math.min(m-1,n);
var nrt:int = Math.max(0,Math.min(n-2,m));
var j:int;
var t:Number;
for (var k:int = 0; k < Math.max(nct,nrt); k++) {
if (k < nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
s[k] = 0;
for (i = k; i < m; i++) {
s[k] = hypot(s[k],a[i][k]);
}
if (s[k] != 0.0) {
if (a[k][k] < 0) {
s[k] = -s[k];
}
for (i = k; i < m; i++) {
a[i][k] /= s[k];
}
a[k][k] += 1;
}
s[k] = -s[k];
}
for (j = k+1; j < n; j++) {
if ((k < nct) && (s[k] != 0.0)) {
// Apply the transformation.
t = 0;
for (i = k; i < m; i++) {
t += a[i][k] * a[i][j];
}
t = -t/a[k][k];
for (i = k; i < m; i++) {
a[i][j] += t*a[i][k];
}
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = a[k][j];
/*trace ('e[' + j + ']: ' + e[j]);*/
}
if (wantu && (k < nct)) {
// Place the transformation in U for subsequent back
// multiplication.
for (i = k; i < m; i++) {
Ui[i][k] = a[i][k];
}
}
if (k < nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
// Compute 2-norm without under/overflow.
e[k] = 0;
for (i = k+1; i < n; i++) {
e[k] = hypot(e[k],e[i]);
}
if (e[k] != 0.0) {
if (e[k+1] < 0.0) {
e[k] = -e[k];
}
for (i = k+1; i < n; i++) {
e[i] /= e[k];
}
e[k+1] += 1.0;
}
e[k] = -e[k];
if ((k+1 < m) && (e[k] != 0.0)) {
// Apply the transformation.
for (i = k+1; i < m; i++) {
work[i] = 0.0;
}
for (j = k+1; j < n; j++) {
for (i = k+1; i < m; i++) {
work[i] += e[j] * a[i][j];
}
}
for (j = k+1; j < n; j++) {
t = -e[j]/e[k+1];
for (i = k+1; i < m; i++) {
a[i][j] += t*work[i];
}
}
}
if (wantv) {
// Place the transformation in V for subsequent
// back multiplication.
for (i = k+1; i < n; i++) {
Vi[i][k] = e[i];
}
}
}
}
// Set up the final bidiagonal matrix or order p.
var p:int = Math.min(n,m+1);
if (nct < n) {
s[nct] = a[nct][nct];
}
if (m < p) {
s[p-1] = 0.0;
}
if (nrt+1 < p) {
e[nrt] = a[nrt][p-1];
}
e[p-1] = 0.0;
// If required, generate U.
if (wantu) {
for (j = nct; j < nu; j++) {
for (i = 0; i < m; i++) {
Ui[i][j] = 0.0;
}
Ui[j][j] = 1.0;
}
for (k = nct-1; k >= 0; k--) {
if (s[k] != 0.0) {
for (j = k+1; j < nu; j++) {
t = 0;
for (i = k; i < m; i++) {
t += Ui[i][k]*Ui[i][j];
}
t = -t/Ui[k][k];
for (i = k; i < m; i++) {
Ui[i][j] += t*Ui[i][k];
}
}
for (i = k; i < m; i++ ) {
Ui[i][k] = -Ui[i][k];
}
Ui[k][k] = 1.0 + Ui[k][k];
for (i = 0; i < k-1; i++) {
Ui[i][k] = 0.0;
}
} else {
for (i = 0; i < m; i++) {
Ui[i][k] = 0.0;
}
Ui[k][k] = 1.0;
}
}
}
// If required, generate V.
if (wantv) {
for (k = n-1; k >= 0; k--) {
if ((k < nrt) && (e[k] != 0.0)) {
for (j = k+1; j < nu; j++) {
t = 0;
for (i = k+1; i < n; i++) {
t += Vi[i][k]*Vi[i][j];
}
t = -t/Vi[k+1][k];
for (i = k+1; i < n; i++) {
Vi[i][j] += t*Vi[i][k];
}
}
}
for (i = 0; i < n; i++) {
Vi[i][k] = 0.0;
}
Vi[k][k] = 1.0;
}
}
// Main iteration loop for the singular values.
var pp:int = p-1;
var iter:int = 0;
var eps:Number = 1e-10;
var tiny:Number = 1e-10;
var ks:int;
var ttt:Number;
var f:Number;
var kase:int;
var iteration:int = 0;
var debug:Boolean = false;
while (p > 0) {
/*if (iteration++ % 100 == 0) {
trace('iteration: ' + iteration + ' p: ' + p);
debug = true;
} else debug = false;*/
// Here is where a test for too many iterations would go.
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; k--) {
if (debug) {
trace('k: ' + k);
}
if (k == -1) {
break;
}
if (Math.abs(e[k]) <= tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
e[k] = 0;
break;
} else if (debug) {
trace('e[k]: ' + Math.abs(e[k]) + ' sth: ' + (tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))));
}
}
if (k == p-2) {
kase = 4;
} else {
for (ks = p-1; ks >= k; ks--) {
if (ks == k) {
break;
}
ttt = (ks != p ? Math.abs(e[ks]) : 0.) +
(ks != k+1 ? Math.abs(e[ks-1]) : 0.);
if (Math.abs(s[ks]) <= tiny + eps*ttt) {
s[ks] = 0.0;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p-1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
f = e[p-2];
e[p-2] = 0.0;
for (j = p-2; j >= k; j--) {
t = hypot(s[j],f);
cs = s[j]/t;
sn = f/t;
s[j] = t;
if (j != k) {
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if (wantv) {
for (i = 0; i < n; i++) {
t = cs*Vi[i][j] + sn*Vi[i][p-1];
Vi[i][p-1] = -sn*Vi[i][j] + cs*Vi[i][p-1];
Vi[i][j] = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2: {
f = e[k-1];
e[k-1] = 0.0;
for (j = k; j < p; j++) {
ttt = hypot(s[j],f);
var cs:Number = s[j]/ttt;
var sn:Number = f/ttt;
s[j] = ttt;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu) {
for (i = 0; i < m; i++) {
ttt = cs*Ui[i][j] + sn*Ui[i][k-1];
Ui[i][k-1] = -sn*Ui[i][j] + cs*Ui[i][k-1];
Ui[i][j] = ttt;
}
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
var scale:Number = Math.max(Math.max(Math.max(Math.max(
Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),
Math.abs(s[k])),Math.abs(e[k]));
var sp:Number = s[p-1]/scale;
var spm1:Number = s[p-2]/scale;
var epm1:Number = e[p-2]/scale;
var sk:Number = s[k]/scale;
var ek:Number = e[k]/scale;
var b:Number = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
var c:Number = (sp*epm1)*(sp*epm1);
var shift:Number = 0.0;
if ((b != 0.0) || (c != 0.0)) {
shift = Math.sqrt(b*b + c);
if (b < 0.0) {
shift = -shift;
}
shift = c/(b + shift);
}
f = (sk + sp)*(sk - sp) + shift;
var g:Number = sk*ek;
// Chase zeros.
for (j = k; j < p-1; j++) {
ttt = hypot(f,g);
cs = f/ttt;
sn = g/ttt;
if (j != k) {
e[j-1] = ttt;
}
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
if (wantv) {
for (i = 0; i < n; i++) {
ttt = cs*Vi[i][j] + sn*Vi[i][j+1];
Vi[i][j+1] = -sn*Vi[i][j] + cs*Vi[i][j+1];
Vi[i][j] = ttt;
}
}
ttt = hypot(f,g);
cs = f/ttt;
sn = g/ttt;
s[j] = ttt;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if (wantu && (j < m-1)) {
for (i = 0; i < m; i++) {
ttt = cs*Ui[i][j] + sn*Ui[i][j+1];
Ui[i][j+1] = -sn*Ui[i][j] + cs*Ui[i][j+1];
Ui[i][j] = ttt;
}
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if (s[k] <= 0.0) {
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv) {
for (i = 0; i <= pp; i++) {
Vi[i][k] = -Vi[i][k];
}
}
}
// Order the singular values.
while (k < pp) {
if (s[k] >= s[k+1]) {
break;
}
ttt = s[k];
s[k] = s[k+1];
s[k+1] = ttt;
if (wantv && (k < n-1)) {
for (i = 0; i < n; i++) {
ttt = Vi[i][k+1]; Vi[i][k+1] = Vi[i][k]; Vi[i][k] = ttt;
}
}
if (wantu && (k < m-1)) {
for (i = 0; i < m; i++) {
ttt = Ui[i][k+1]; Ui[i][k+1] = Ui[i][k]; Ui[i][k] = ttt;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
return [Ui, Vi, s];
}
public static function hypot(a:Number, b:Number):Number {
var r:Number;
if (Math.abs(a) > Math.abs(b)) {
r = b/a;
r = Math.abs(a)*Math.sqrt(1+r*r);
} else if (b != 0) {
r = a/b;
r = Math.abs(b)*Math.sqrt(1+r*r);
} else {
r = 0.0;
}
return r;
}
}
import org.papervision3d.objects.*;
import org.papervision3d.core.math.*;
class PV3DUtils
{
public static function rotate(x : Number3D, axis : Number3D, angle : Number) : Number3D
{
var nCos:Number = Math.cos(angle);
var nSin:Number = Math.sin(angle);
var scos:Number = 1 - nCos;
var sxy :Number = axis.x * axis.y * scos;
var syz :Number = axis.y * axis.z * scos;
var sxz :Number = axis.x * axis.z * scos;
var sz :Number = nSin * axis.z;
var sy :Number = nSin * axis.y;
var sx :Number = nSin * axis.x;
var nx : Number = (nCos + axis.x * axis.x * scos) * x.x + (-sz + sxy) * x.y + (sy + sxz) * x.z;
var ny : Number = (sz + sxy) * x.x + (nCos + axis.y * axis.y * scos) * x.y + (-sx + syz) * x.z;
var nz : Number = (-sy + sxz) * x.x + (sx + syz) * x.y + (nCos + axis.z * axis.z * scos) * x.z;
x.x = nx; x.y = ny; x.z = nz;
return x;
}
public static function rotateMulti(xs : Array, axis : Number3D, angle : Number) : void
{
var nCos:Number = Math.cos(angle);
var nSin:Number = Math.sin(angle);
var scos:Number = 1 - nCos;
var sxy :Number = axis.x * axis.y * scos;
var syz :Number = axis.y * axis.z * scos;
var sxz :Number = axis.x * axis.z * scos;
var sz :Number = nSin * axis.z;
var sy :Number = nSin * axis.y;
var sx :Number = nSin * axis.x;
for each(var x : Number3D in xs){
var nx : Number = (nCos + axis.x * axis.x * scos) * x.x + (-sz + sxy) * x.y + (sy + sxz) * x.z;
var ny : Number = (sz + sxy) * x.x + (nCos + axis.y * axis.y * scos) * x.y + (-sx + syz) * x.z;
var nz : Number = (-sy + sxz) * x.x + (sx + syz) * x.y + (nCos + axis.z * axis.z * scos) * x.z;
x.x = nx; x.y = ny; x.z = nz;
}
}
public static function setLookAt(d : DisplayObject3D, front : Number3D, up : Number3D) : void
{
var X : Number3D = Number3D.cross(front, up);
var look : org.papervision3d.core.math.Matrix3D = d.transform;
look.n11 = X.x; look.n21 = X.y; look.n31 = X.z;
look.n12 = -up.x; look.n22 = -up.y; look.n32 = -up.z;
look.n13 = front.x; look.n23 = front.y; look.n33 = front.z;
}
}
import org.papervision3d.cameras.*;
class QCamera3D extends Camera3D
{
public var _up : Number3D; // カメラの上の向きの単位ベクトル
protected var _front : Number3D;
private var _prevDir : Number3D;
public function QCamera3D(up : Number3D, front : Number3D= null)
{
super();
_up = null;
init(up, front);
}
// prevDirからcurDirへ向ける回転を_upにかけるだけ。カメラ自体に操作はしない
public function rotate(curDir : Number3D) : void
{
if(_prevDir != null){
var n : Number3D = Number3D.cross(curDir, _prevDir);
// if(n.moduloSquared > 0.00000001){
if(n.moduloSquared != 0){
n.normalize();
var angle : Number = Math.acos(Number3D.dot(_prevDir, curDir));
if(_front != null){
PV3DUtils.rotate(_front, n, angle);
}
PV3DUtils.rotate(_up, n, angle);
}
}
_prevDir = curDir.clone();
}
// カメラを_frontのほうへ向ける
public function head() : void
{
if(_front != null){
var Z : Number3D = _front.clone();
Z.normalize();
var X : Number3D = Number3D.cross(Z, _up);
X.normalize();
var Y : Number3D = Number3D.cross(Z, X);
Y.normalize();
var look : org.papervision3d.core.math.Matrix3D = this.transform;
look.n11 = X.x*this.scaleX; look.n21 = X.y*this.scaleY; look.n31 = X.z*this.scaleZ;
look.n12 = -Y.x*this.scaleX; look.n22 = -Y.y*this.scaleY; look.n32 = -Y.z*this.scaleZ;
look.n13 = Z.x*this.scaleX; look.n23 = Z.y*this.scaleY; look.n33 = Z.z*this.scaleZ;
}
}
public function init(up : Number3D = null, front : Number3D = null) : void
{
if(up != null){
_up = up.clone();
_up.normalize();
}
if(front != null){
_front = front.clone();
_front.normalize();
}else{
_front = null;
}
_prevDir = null;
}
}
// 球面上を動き、球の中心を見るカメラ
class SphereCamera extends QCamera3D
{
private var _O : Number3D; // 球の中心
private var _R : Number; // 球の半径
// O : 中心座標
// R : 半径
// front : カメラ正面の向きを表す単位ベクトル
// up : カメラ上の向きを表す単位ベクトル
public function SphereCamera(O : Number3D, R : Number, front : Number3D, up : Number3D) : void
{
super(up, front);
_O = O;
_R = R;
move();
}
public function move(x : Number = 0, y : Number = 0) : void
{
if(x != 0 || y != 0){
var X : Number3D = Number3D.cross(_up, _front);
var axis : Number3D = new Number3D(X.x * -y + _up.x * x, X.y * -y + _up.y * x, X.z * -y + _up.z * x);
var angle : Number = axis.modulo;
axis.normalize();
PV3DUtils.rotate(_front, axis, angle);
PV3DUtils.rotate(_up, axis, angle);
this.x = _front.x * -_R + _O.x;
this.y = _front.y * -_R + _O.y;
this.z = _front.z * -_R + _O.z;
head();
}
}
}
import flash.display.*;
import flash.events.*;
class OperableSphereCamera extends SphereCamera
{
private var _dx : Number;
private var _dy : Number;
private var _stage : DisplayObject;
private var _prevX : Number = -1;
private var _prevY : Number = -1;
private var _down : Boolean = false;
// O : 中心座標
// R : 半径
// front : カメラ正面の向きを表す単位ベクトル
// up : カメラ上の向きを表す単位ベクトル
// stage : マウスイベントをlistenするDisplayObject
// dx : カメラ横への移動角度単位
// dy : カメラ上への移動角度単位
public function OperableSphereCamera(O : Number3D, R : Number, front : Number3D, up : Number3D, stage : DisplayObject, dx : Number, dy : Number) : void
{
super(O, R, front, up);
_dx = dx;
_dy = dy;
_stage = stage;
addCallback();
move(0, 0.001);
}
public function addCallback() : void
{
_stage.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
_stage.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
_stage.addEventListener(Event.ENTER_FRAME, onEnterFrame);
}
public function removeCallback() : void
{
_stage.removeEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
_stage.removeEventListener(MouseEvent.MOUSE_UP, onMouseUp);
_stage.removeEventListener(Event.ENTER_FRAME, onEnterFrame);
}
private function onMouseDown(e : MouseEvent) : void { _down = true; }
private function onMouseUp(e : MouseEvent) : void { _down = false; }
private function onEnterFrame(e : Event) : void
{
if(_down){
if(_prevX != -1){
this.move((_stage.mouseX - _prevX) * _dx, (_stage.mouseY - _prevY) * _dy);
}
_prevX = _stage.mouseX;
_prevY = _stage.mouseY;
}else{
_prevX = -1;
_prevY = -1;
}
}
}